Article 8419

Title of the article

THE INVERSE PROBLEM OF ELECTROMAGNETIC CHARACTERISTICS RECONSTRACTION OF A MULTISECTIONAL ANISOTROPIC DIAPHRAGM IN THE RECTANGULAR WAVEGUIDE 

Authors

Derevyanchuk Ekaterina Dmitrievna, Candidate of physical and mathematical sciences, researcher, research center “Supercomputer modeling in electrodynamics”, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: katyader11@yandex.ru
Derevyanchuk Nataliya Vladimirovna, Candidate of engineering sciences, associate professor, sub-department of mathematical support and computer applications, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: natader@yandex.ru
Loginov Maksim Aleksandrovich, Student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru 

Index UDK

517.3 

DOI

10.21685/2072-3040-2019-4-8 

Abstract

Background. This work is devoted to inverse problem of electromagnetic characteristics reconstruction of isotropic and anisotropic diaphragms. The aim of study is to develop numerical-analytical methods of solving inverse problems.
Materials and methods. We consider inverse problem: inverse problem of permittivity and permeability tensors reconstruction of multi-sectional diaphragm. The problem is devoted to the boundary value problem for Maxwell’s equations.
Results. We obtain numerical-analytical methods of the solution of the inverse problem.
Conclusions. The numerical methods of solving the inverse problem and numerical results can be used in practice to reconstruct electromagnetic characteristics of modern materials. 

Key words

isotropic material, anisotropic material, electrodynamics problem, integrated dielectric conductivity, tensor of magnetic permeability, diagonal tensor, tensor of the dielectric permittivity, waveguide method 

 Download PDF
References

1. Vaynshteyn L. A. Elektromagnitnye volny [Electromagnetic waves]. Moscow: Radio i svyaz', 1988, 440 p.
2. Derevyanchuk E. D., Rodionova I. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2018, no. 2, pp. 57–63. [In Russian]
3. Makeeva G. S., Golovanov O. A. Matematicheskoe modelirovanie elektroupravlyaemykh ustroystv teragertsovogo diapazona na osnove grafena i uglerodnykh nanotrubok: monografiya [Mathematical modeling of electrically controlled devices of terahertz d-band based on graphene and carbon nanotubes: monograph]. Penza: Izd-vo PGU, 2018, 304 p. [In Russian]
4. Medvedik M. Yu., Smirnov Yu. G. Obratnye zadachi vosstanovleniya dielektricheskoy pronitsaemosti neodnorodnogo tela v volnovode [Inverse problems of reconstructing the dielectric constant of an inhomogeneous body in a waveguide]. Penza: Izd-vo PGU, 2014, 76 p. [In Russian]
5. Nikol'skiy V. V., Nikol'skaya T. I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamic and radio wave propagation]. Moscow: Nauka, 1989, 544 p. [In Russian]
6. Strizhachenko A. V. Izmerenie anizotropnykh dielektrikov na SVCh. Teoreticheskiy analiz, ustroystva, metody [Measurement of anisotropic dielectrics in microwave. Theoretical analysis, devices, methods]. LAP LAMBERT Academic Publishing, 2011, 288 p. [In Russian]
7. Usanov D. A., Skripal' A. V., Nikitov S. A., Merdanov M. K., Evteev S. G. Fizika volnovykh protsessov i radiotekhnicheskie sistemy [Physics of wave processes and radio engineering systems]. 2017, vol. 20, no. 3, pp. 43–51. [In Russian]
8. Shvan Kh. P., Foster K. R. TIIER. 1980, no. 1, pp. 121–132 s.
9. Analytical and numerical methods in electromagnetic wave theory. Ed. by M. Hashimoto, M. Idemen, O. A. Tretyakov. Tokyo: Science House Co., 1993.
10. Baena J. D., Jelinek L., Marques R., Zehentner J. Appl. Phys. Lett. 2006, vol. 88, pp. 134108-1–3.
11. Beilina L., Shestopalov Yu. V. Inverse problems and large–scale computations. Springer International Publishing Switzerland, 2013, 223 p.
12. Martin N., Sailing H. IEEE Transactions On Microwave Theory Techniques. 1995, vol. 43, no. 6, pp. 1315–1321.
13. Derevyanchuk E. D., Smirnov Yu. G. Proceeding of International Conference of Mathematics 2016. ICNAAM, 2016, pp. 2–s2. 0–8526635622.
14. Smirnov Yu. G. Mathematical methods for electromagnetic problems. Penza, 2009, 266 p.

 

Дата создания: 21.04.2020 12:23
Дата обновления: 21.04.2020 14:43